Summer Assignment fof Honors Calculus

Problems below are from Anton Calculus Book, 7t edition, pages attached.
Appendix A, Read examples 4 and 5 carefully, p. A10: 23-45 odd, 46
Appendix B, Read example 4, p. A 15: 17-35 odd

Appendix C, p A 25-27:5,7,11, 19, 23, 33¢, 41,43
Appendix D, p. A 34-36: 9, 29, 33,37, 41, 47, 48,51, 59, 69, 77,81

Problems below are from Anton Calculus Book , 9t edition.
You have a PDF of the book.

Read each section carefully before working out problems.
Appendix B. Trigonometry Review: p. A23-A25: 1-53 odd

Appendix C: Polynomial equations: p. A34-35:1-23 odd -
Directions

This summer complete all problems above.
If you have difficulty with a problem, make sure you have read the examples.

You should be able to do the problems without a calculator, but you should check
your answers on the calculator. Also, odd answers are in the back of the book.
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Figure A.1 describes the various categories of numbers that we will encounter in this text,

The simplest numbers are the natural numbers
1, 2, 3, 4, 5,...
These are a subset of the integers
vy —4, 3, =2, ~1, 0, 1, 2, 3, 4,...

and these in turn are a subset of the rational numbers, which are the numbers formed by

taking ratios of integers (avoiding di'vlis'ion by 0). Some examples. are

3 0L =2 o9=f -i=3F=3

"The early Greeks believed that every measirable quantity had to be a rational number
However, this idea was overturnied i the fifth century B.C. by Hippasus of Metapontum
who. demonstrated the existence of irvational numbers, that is, numbers that cannot be
expressed as the ratio of two integers. Using geometric methods, he showed that the length
of the hypotenuse of the triangle in Figure A.2 could not be expressed as a ratio of i integers,
thereby proving that V2is an irrational number. Some other examples of irrational numbers

are

V3, V5, 1+ «/5 «3/7 r, <cos19°
The rational and irrational numbers to gether comprise whatis called the real number system,
and both the rational and irrational numbers are called real numbers. -
Becausefthe square of a real number cannot be negative, the equation
2
x*=-1

has no solutions in the real number system, In the eighteenth century mathematicians reme-
died this problem by inventing a new number which they denoted by

i= A - 1 . .
and which they defined to have the property i? = —1. This, in turn, led to the development

* HIPPASUS OF METAPONTUM (circa 5008.C.). A Greek Pythagorean philosopher. According to legenid, Hippagus

' made His discovery at sea and was:thrown overboard by fanatic Pythagoreans because his result contradicted their
doctrine. The discovery of Hippasus is one.of the most fundamental in the entire history of science.
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3,142692653589793238 33832795 197163
39937510582097454459230751640628620899462803
48253421170679821480865132823066470338446095
50582231725359408128481117450284202701838521
105559644622948954930381964428810975656593344

-621284756482337867831652712019091455485669234.
-6034861.0454326648213393607260249141273724587

.00660631550817458152092096282925409171536436
78925903600313305305480204665213841469518415
'11609433057270365759551953092186217381937612
79310511685480744 62379362 74956735188575272485
-12279381830119491258336733628406566430860213
54946395224737180702170860943702770538217176

2931767523646714818667669405213200056812714526
35608277857713427577896091736371 787214684403

-61224953430148549585371050792279689258923542

01995611:2129021960864034418159B1362977477130

99605187072113493999383723780459510597317328
16096310595024458455346508302642522308253344

68501526193118817101000313763875288658753320-

83814206171776693473035962534904287554687311
59562863882353787593751957781857780532171226
8066130019278766111959092164201589

Figure A.3
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of the complex 'namber; , wiﬁch are numbers of the form

a -+ bi
where a and b are real numbers. Some examples are
. y *
2+3i 3—d4i 6i 2
la = 2,5 =3 =23, e la =0, b = 6] er == . b == 0]

Observe that every real number a is also a complex number because it can be written as
a=a+0i ‘

Thus, the real numbers are 4 subset of the complex numbers. Although we will be concerned

* primarily with real numbers in this text, complex nambers will arise in the course of solving

equations. For example, the solutions of the quadratic equation
axt+bx+e=0
which are given by the quadratic formula

are not real if the quantity 4* — 4ac is negative.

Division by zero is not allowed in numerical computations because it leads t6 mathematical

inconsistencies. For example, if 1/0 were assigned some numerical value, say p, then it
would follow that 0 - p = 1, which is incorrect.

Rational and irra‘tional’ numbers can be distingnished by their decimal representations. Ra-
tional numbers have decimals that are repeating, by which we mean that at some point in
the decimal some fixed block of numbers ‘begins to repeat indefinitely. For example,

$=13%.., F=2712727..., §=.50000..., %=.714285714285714285...

3 repeats 27 wepeuts aepeats “TH2E5 repeals

Decimals in which zero repeats from some point on are called terminating decimals. For

brevity, it is-usual to omit the repetitive zeros in terminating decimals and for other repeating
decimals to write the repeating digits only once but with a bar over them to mdicate the repe-
tition. For example,

L 22 8 a4 im 3 —
5=95 2=3 £=32, 4=13 =727, =714285

Irrational numbers have nonrepeating decimals, so we can be certain that the decimals

V2 = 1.414213562373095... and = 3.141592653589793 . .

do not repeat from some point on. Moreover, if we stop the decimal expansion of an irrational

? REMARK.

o

number at some point, we get only an approximation to the number, never an exact value,
For example, even if we compute 7 to 1000 decimal placés, as in Figure A.3, we still have
only an approximation.

Beginning mathematics students are sometimes taught to approx1mate 7 by'
2 . Keep in mind, however, that this is only an approximation, since.

2 = 3.142857

is a rational number whose decimal representation begins to differ from 7 in the third deci-
mal place,
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In 1637 René Descartes™ published a philosophical work called Discourse on the Method
of Rightly Conducting the Reason. In the back of that book was an appendix that the Brit-
ish philosopher John Stuart Mill described as “the greatest single step ever made in the
progress of the exact sciences.” In that appendix René Descartes linked together algebra
and geometry, thereby creating a new subject called arnalytic geometry; it gave a way of
describing algebraic formulas by geometric curves and, conversely, geometric curves by
algebraic formulas. '

'The key step in analytic geometry is to establish a correspondence between real numbers
and points on a line. To do this, choose any point on the line as a reference point, and call
it the origin; and then arbitrarily choose one of the two directions along the line to-be the
positive direction, and let the other be the negative direction. 1t is usual to mark the positive
direction with an arrowhead, as in Figure A.4, and to take the positive direction to the right
when the line is horizontal. Next, choose a convenient unit of measure, and represent each
positive number r by the point that is 7 units from the origin in the positive direction, cach
negative number —r by the point that is r units from the origin in the negative direction
from the origin, and O by the origin itself (Figure A.5). The number associated with a point
P is called the coordinate of P, and the line is called a coordinate line, a real number line,
or areal line.
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The real numbers can be ordered by size as follows: If b—a is positive, then we write either
a < b (read “a is less than #”) or b > a (read “b is greater than a”). We write @ < b to
meang < bora = h,andwe writta < b < ctomeanthatz < band b < ¢. As one.
traverses a coordinate line in the positive direction, the real numbers increase in size, o
on a horizontal coordinate line the inequality ¢ < b implies that a is to the left of b, and
the inequalities @ < b < ¢ imply that g is to the Ieft of ¢, and b lies between « and c. The
meanings of sich symbols as
a<b<ec, asb<c, and a<b<c<d

should be clear. For example, you should be able to confirm that all of the following are
frue statements: .

3<8 —-T<1l5 -12<-w 5<5 0<2<4d,

8>3, 15>-7 —-m>-12, 55, 3>0>—-1>-3
In the following discussion we will be concerned with certain sets of real numbers, so it will
be helpful to review the basic ideas about sets. Recall that a set is a collection of objects,
called elements or members of the set. In this text we will be concerned primarily with sets
whose members are numbers or points that le on a line, a plane, or in three-dimensional
space. We will denote sets by capital letters and elements by lowercase letters. To indicate
that a is a member of the set A we will write @ € A (read “a belongs to A™), and to indicate

* RENE DESCARTES (1596-1650). Descartes, a French aristocrat, was the son of a government official. He grad-
uated from the University of Poitiers with a law degree at age 20, After a brief probe into the pleasares of Patis
he became a military engineer, first for the Dutch Prince of Nassau and then for the German Duke of Bavaria. It
was duting his service as a soldier that Descartes began to-pursue mathematics seriously and develop ‘his snalytic
geometry. After the wars, he returned to Paris where he stalked the city as an eccentric, wearing a sword inhis belt
and a plumed hat. He Hived in leisure, seldom arose before 11 A.M.; and dabbled in the study of human physiology,
philosophy, glaciers, meteors, and rainbows. He eventually moved to Holland; where he.published his Discourse
on the Method, and finally to Sweden where he died Whilé serving as tutor to Queen Christina. Descartes is re-
garded as a genius of the first Magnitude. In addition to major contributions in mathematics and philosophy, he is
considered, along with William Harvey, to be.a founder of modern physiology.
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that @ is not a member of the set A we will write @ ¢ A (read “a does not belong to A™).
For example, if A is the set of positive integers, then 5 € A, but —5 ¢ A. Sometimes sets
arise that have no members (e.g., the set of odd integers that are divisible by 2). A setwith
no members is called an empty set or a null set and is denoted by the symbol .

Some sets can be described by listing their members between braces. The order in which
the members are listed does not matter, so, for example, the set A of positive integers that
are less than 6 can be expressed as

" We can also write A in set-builder notgtion as

= {x : ¥ is an integer and 0 < x < 6}

which is read “A is the set of all x such that x is an integer and 0 < x < 67 In general,
to express a set § in set-builder notation we write § = {x : } in which the line is
replaced by a property that identifies exactly those elements i in the set S.

If every member of a set A is also a member of a set B, then we say that A is a subset
of B and write A € B. For example, if A is the set of positive integers and B is the set of
all integers, then A C B. If two sets A and B have the same members (i.e., A € B and
B C A), then we say that A and B are equal and write A = B.

In calculus we will be concerned with sets of real numbers, called intervals, that correspond
to line segments on a coordinate line. For example, if a < b, then the open interval from a
to b, denoted by (a, b), is the line segment extending from a to b, excluding the endpoints;
and the closed mterval from a to b, denoted by [a, b], is the line segment extending from

a to b, including the endpoints (Figure A.6). These sets can be expressed in set-builder

notation as- v
(@,b)=(x:a<x<b) " Theopen interval from ato b
fa,bl={x:a<x<b} “The closed interval from a to.s

! REMARK. Observe that in this notation and in the corresponding Figure A.6, parentheses
i and open dots mark endpoints that are excluded from the interval, whereas brackets and
i closed dots mark endpoints that are included in the interval. Observe also that in set-builder
i notation for the intervals, it is understood that x is a real number, even though itis not stated
i explicitly.

As shown in Table 1, an interval can include one endpoint and not the other; such
intervals are called half-open (or sometimes half-closed). Moreover, the table also shows

that it is possible for an interval to extend indefinitely in one or both directions. To indicate

that an interval extends indefinitely in the positive direction we write oo (read “positive
infinity”) in place of a right endpoint, and to indicate that an interval extends indefinitely
in the negative direction we write —co {tead “negative infinity”) in place of a left endpoint.
Intervals that extend between two real numbers are called finite intervals, whereas intervals

that extend indefinitely in one or both directions are called infinite intervals.

* REMARK. By convention, infinite intervals of the form [a, +) or (—c0, b] are considered
i to be closed because they contain their endpoint, and intervals of the form (a, +o) and
f (o0, b) are considered to be open because they do-not include their endpoint. The interval
i (—o0, +0), which is the set of all real numbers, has no endpoints and can be regarded as
i either open or closed, as convenient. This set is often denoted by the special symbol R.
i To distinguish verbally between the open interval (0, +o0) = {x : x > 0} and the closed

interval [0, +x) = {x : x > 0}, we will call x positive if x > 0 and nonnegative if

x.> 0. Thus, a positive number must be nonnegative, but a nonnegative number need not
¢ be positive, since it might: possibly be 0.
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Table 1
,NOTAT"ION' NOTATION PICTURE CLASSIFICATION
(a, b). ,{x a<x< b} — @ ’ b —>  Finite; open
Ta, b} {x:asx<b} o .- > Finite; closed
{a, by [xragx<b} S vFi’ni’tev; half-open
{a, bl {xta<x<£b} a ey o Finite; half-open
(—o0, bl {x:x < b} : " > Infinite; closed
(=00, b) fx:x<b} 7 > Infinite; open
L4, +o0) {x:x2a} , e NI Infinite; closed
(@, +o00) {x:x>a} i Infinite; open

(=00, +o) R s Infinite; open and closed

If A and B are. sets, then the union of A and B (denoted by A U B) is the set whose members

belong to A or B (or both), and the intersection of A-and B (denoted by A N B) is the set
whose members belong to both A and' B. For example,

Fi0<x<SlUxil<x<Ti=x:10<x <7}
fxrx<liNfx:x >0 ={x :'Os.x < 1}
x:x<0}O{x:x >0} =
orin interval notation,
0,5U,7)=0,7
(=00, 1) N[0, o0y = [0, 1)
(=00, 0) N (0, +w) =

The following algebraic properties of inequalities will be used frequently in this text. We
omit the proofs,

Al THEOREM (Properties of Inequalities). Let a, b, c, and d be real numbers.
(@) Ifa<bandb <c thena < c.

& lfa<b thena+ec<b+canda—c<b-ec.

(¢) Ifa <b, thenac < bc when c is positive and ac > bc when ¢ is negative.
@) Ifa<bandc<d, thena+c<b+d.

(e) Ifa and b are both positive or both negative and a < b, then 1/a > 1/b.

If we call the direction of an mequahty its sense, then these properties- can be paraphrased
as follows: .

(&) The sense of an inequality is unchanged if the same number is added to or subtracted
Jrom both sides.
(©) Thesenseofan meq_zfaht‘y is unchanged if both sides.are multiplied by the same. poszttve.

number, but the sense is reversed.if both sides are mulzzplzed by the same negative
number. : .
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(@) Inequalities with the séﬁze sense can be added.
(€) Ifboth sides of an inequality have the same sign, then the sense of the inequality is
reversed by taking the reciprocal of each side.

! REMARK. These properties remain true if the symbols < and > are replaced by < and > -
i in Theorem A.1.

SOLVING INEQUALITIES
i) i
5
Figure A.7

Example 1
STARTING ' RESULTING
INEQUALITY OPERATION INEQUALITY
—2 < 6 Add 7 to both sides. 5<13
2<6 Subtract § from both sides. ~10< -2
-2<6 Multiply both sides by 3. -6<i8
~2<6 Multiply both sides by -3, 6>-18
37 Multiply both sides by 4, 12 <28
3<7 Multiply both sides by —4. -12>-28
3<7 Take reciprocals of both sides. % > %
-8 < -6 Take reciprocals of both sides. ~ —¢ > -1

4<5,~7<8  Add corresponding sides. 3<13

A solution of an inequality in an unknown x is value for x that makes the inequality a tiue
statement. For example, x = 1 is a solution of the inequality x < 5, but x = 7 is not. The
set-of all solutions of an inequality is called its solution set. Tt can be shown that if one does
not multiply both sides of an inequality by zero or an expression involving an unknown,
then the operations in Theorem A.1 will not change the solution set of the inequality. The
process of finding the solution set of an inequality is called solving the mequahty

Example 2 Solve 3 + Tx <2x -9

Selution. We will use the operations of Theorem A.1 to isolate x on one side of the in-
equality.
34+7x<2x—9  Given. |
1o
5x < —-12

i2
5

" We subtrasted 2% from both sides,

x <=2 Wemultipfied both sides by }. :

Because we have not multiplied by any expressions involving the unknown x, the lastin-
equality has the same solution set 4s the first. Thus, the solution set is the mterval (—oe — 1-?‘-]

shown in Figure A.7. <4

Example 3 Solve7<2-5x<9.

Solution. The given inequality is actually a combination of the two inequalities

7<2—5x and 2—-5x <9

‘We could solve the two inequalities separately, then determine the values of x that satisfy
both by taking the intersection of the two solution sets. However, it is poss;bie to work with
thie combined inequalities in this problem:
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T7<2—-5%<9

55 ~5x <7 ?We suﬁlracted‘iffom each mcmber |

15 %> _z We muluphed by —g and reversed. "
R { thesense.of the mequahtnes

_r w1 -Ai’ﬂ(;r clam.y, we rewrote the mcqual:t:es i
F <x=-1 . with thc smal!cr number on the left. |

Thus, the solution set is the interval (—— ~1] shown in Figure A.8. <

Example 4 Solve x? — 3x > 10.
Solution. By subtracting 10 from both sides, the inequality can be rewritten as
¥ =3x—-10>0
Factoring the left side yields
x+2x—-5>0
The values of x for whichx +2=0orx —5=0are x = —2and x = 5. These values
divide the coordinate line into three open intervals,
(=, =2), (=2,5), (5, +w)

on each of which the product (x + 2)(x — 5) has constant sign. To determine those signs
we will choose an arbitrary number in each interval at which we will determine the sign;
these are called fest values. As shown in Figure A9, we will use —3, 0, ‘and 6 as our test
values. The results can be organized as follows:

SIGN OF

(x+2)}x-5)
INTERVAL TEST VALUE AT THE TEST VALUE
(—o0,-2) -3 GE =+
2,3 0 (HE) =~

(5, +e0) 6 (#)0H) = +

The pattern of signs in the intervals is shown on the number line in the middle of Figure A.9.

We deduce that the solution set is (—eo, —2) U (5, 4-o0), which is shown at the bottom of
Figure A.9. «

3 0 6 ' -

{ . 1 " . .
— e » f Test values }
*+'+G~—--~--'.~—:(I)~r'+++ i —
i 1 5 | S of Yo &Y
— L > | Sign of (x+2)(x~5) ]
D RN ey

Figure A.9 . -2 5 x+2)(x—-5)>0

Example 5 Solve 2xx: 25 < 1.

Solution, We could start by multiplying both sides by x — 2 to eliminate the fraction.
However, this would require ys to consider the cases x ~2 > Oandx —2 < 0 separately
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Figure A.10

EXERCISE SET A

bt_zcause the sense of the inequality would be reversed in the second case, but not the first.
The following approach is simpler:
2x -5
: <
-5 -1 <0 fW@_subLtac_w(I 1 from both sides
: ,' to qbtain- a0 on the sight.

R
;' We combined

terms. |

The quantity x — 3 is zero if ¥ = 3, and the quantity x — 2 is zero if x = 2. These values
divide the coordinate line into three open intervals,
(—OD, 2}7= (21 3)3 (31 +°°)

on each of which the quotient (x — 3)/(x —2) has constant sign. Using 0, 2.5, and 4 as test
values (Figure A.10), we obtain the following results:

—7T

SIGN OF

_ (x-3)/(x-2)

INTERVAL. TEST VALQE AT THE TEST VALUE

(-0, 2) 0 - ) =+

2.3) 25 ) = -
4

(3, +o0) () =+

The signs of the quotient are shown in the middle of Figure A.10. From the figure we see
that the solution set consists.of all real values of x such that 2 < x < 3. This is the interval

(2, 3) shown at the bottom of Figure A.10. =«
0 2.5 4 :
¥ X | iy -
B > { 'geﬁivalues !
+++++*|~h?+++‘+++ ‘ -
Solution set for {
¢ < > x=3

PPV G EIEIIIENOBBEINEPI0NRTENN000000430KFR00000004300080 803 ddsNecdaonitNiggdsedad00ed00d00eUNININdea0oitnidaduoanqas

1. Among the terms integer, rational, and irrational, which

.ones apply to the given number?
(@ —% (b) 0

() 0.25 (€) —v16
(g) 0.020202...

2. Which of the terms integer, rational, and irrational apply -

to the given number?
() 0.31311311131111...  (b)
(c) 0.376237623762... ()]

3. The repeating decimal 0.137137137. .. can be expressed as
a ratio of integers by writing

© 3 x=0.137137137 ...

® 2"

o 1000x = 137.137137137...
(h) 7.000...

and subtracting to obtain 999x = 137 or x = ;—g—g- .. Use this
idea, where needed, to express the following decimals as
ratios of integers.
(a) 0.123123123. ..
(c) 38.07818181...

0.729999...
17%

(b) 127777 . ..
(d) 0.4296000...
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4. Show that the repeating decimal 0.99999. .. represents the'
number 1. Since 1.000...is also a decimal representation
. of 1, this problem shows that a real number can have two
different decimal representations. {Hini: Use the technique

of Exercise. 3.]

8. In each line of the accompanying table, check the blocks,
if any, that describe a valid relationship between the real
numbers a, &, and ¢.

L

5. The Rhind Papyrus, which is a fragment of Egyptian math--

ematical eriting from about 1650 B.C., is one of the oldest Hin W
‘known cxamples of written mathematics. It is stated in the Cob o4 -3
papyrus that the area A of a circle is related to its diameter 5 Ty
Dby l2]2]%
A= (o) el

: — . o 075|125 125

(a) What approximation to 7 were the Egyptians using? b v
Table Ex-8

(b) Use a calculating utility to determine if this approxi-
mation is better or worse than the approximation 27—2

6. The following are all famous approximations to 7 9. Which of the following are always correct if 2 < b? >

233 (@) a—3<h-3 ) ~a<—b
R | Adtian Athoniszoon, . 1583 | ©3~as<3-b (d) 6a < 6b e
1 6 e © o <ab ) & <’ 5 AT
113 | ou Chung-Chi and others | 10. Which of the following are always comrect if 2 < b and
o ' c<d?
63 (17 +154/5) o (@ a+2c<b-+2d b) a—2c<b~2d
—f " * Ramamijan : '
25 7-{-‘135«/5: L ©a-2>b-2d
' 22 e _ 11. For what values of a are the following inequalities valid?
= . Archimedes ' ’ :
7 ol i (a) a 5 a (b) a<a
27_213 : Ammmmn 12. Ifa <bandb < a,:what can you say about g and b?

13. (a) Ifa < b is true, does it follow that @ < b must also be

(a) Use a calculating utility to order these approxxmtmns
according to size.

(b) Which of these approximations is closest to but larger
than 7?7

(c) Which of these approximations is closest to but smaller
than 7?7

(d) ‘Which of these approximations is most accurate?

7. In each line of the accompanying table, check the blocks,
if any, that describe a valid relationship between the real
numbers ¢ and b. The first lisie is already completed as an
illustration,

611
=315

5 -3
4| -4
j025] 3
L 3
4

Table Ex-7

. e

hal

16. let A =

true?
() Fa < bis tnie, does it foilow that ¢ < b must also be
. true?

14, In each part list the elements in the set.

(@) {x:x*—5x =0}
(b) {x : x is an integer satisfying —2 < x < 3}

15. In each part, express the set in the notation {x : b

@ {1,3,5,7,9....}

(b) the set of even integers

(c) the set of irrational numbers
(@ {7,8,9, 10}

{1,2, 3}. Which of the following sets are equal
to A?

(@ {0,1,2,3) ® 3.2, 1}

© x:(x—~ 3)(x —3x+2) =0}

17. In the accompanying figure, let

§ = the set of points inside the square
T’ = the set of points inside the triangle
-C = the set of points inside the circle

" and letaq, b, Vand, ¢ be the points shown. Answer the follow-

ing as true or false.
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®TCS
da¢s
(f)aeCoraeT

T3 -+ >0
39, %2 ~9x+£20<0
2 3
43. P —x*—-x—-2>0

38 (x - N +4) <0
40. 2 35 +x2>0
42, ! > 3
*+1 7 x—-2
4. x* -3x4+2<0

In Exercises 45 and 46, find all values of x for which the

Figtire Ex-17

18. Listall subsets.of
(@) {a1,az,as} b) <.
19. In each part, sketch on a coordinate line all values of x
that satisfy the stated condition.
@ x <4 ®) x>-3
@ x2=9 (€) x2 <9

() ~1<x =<7
£y x*>9

20. In parts (a)~(d), sketch on a ¢oordinate line all values of x,
if any, that satisfy the stated conditions.

(@ x>4 and x<8
(by x <2 or xx=5
() x>—-2 and x>3
(dy x <5 and x>7

21.. Express in interval notation.
(@) x:x* <4 ®) {x:x*>4)

22.. In each part, sketch the set on a coordinate line.
@ [-3,21U[1,4] ®) @4, 61U 8, 11]
(©) (—4,00U (-5, 1) @ 2ZHuEn
(e} (—2,4)N (0, 5] () 11,2.3)U (1.4, «/5)
(8 (—oo, —DU(=3,4+2) (B) (—,5) N[0, +w)

| InExercises 23-44, solve the inequality and sketch the solu-
: tion on a:coordinate tine.

24, ix 46214
26. 2x— 1> 11x+9
28. -223~8x > ~11

23. 3x—~2 <8
25. 44 5x <3x -7
27.3<£4-2x <7

X . X .
29,x_3<4 | 30. 8‘—~x272
a1 2L Nt

x =2 44x
33. . 4 - <1 34, 3. <2

Z— X x—5
35. x2>9 . 36. x> <5

given expression yields & real number:

47.

48.

49.

50.

51.

52

*

33.

54.
5s.
56.

58.

46. »fx +2
Yx—~1

Fahrenheit and Celsius temperatures are related by the for-

mula C = 3(F —32). Xf the temperature in degrees Celsius

ranges over the interval 25 < C < 40 on a certain day, what

is the temperature range in degrees Fahrenheit that day?

Every integer is either even or odd. The even integers are

those that are divisible by 2, so n is even if and only if

n = 2k for some integer k. Bach odd integer is one unit

larger than an even integer, so n is odd if and only if

n = 2k + 1 for some integer k. Show:

(a) Ifniseven, then soisn?

(b) Ifnisodd, then so is n2.

Prove: the following results about sums of rational and

irrational numbers:

(a) rational - rational = rational

(b} rational + irrational = irrational.

Prove the following results about products of rational and

irrational numbers:

{a) rational - rational = rational

(b) rational - irrational = irrational
factor is nonzero):

{provided the rational

Show that the sum or product of two irratipnal numbers can
be rational or irrational.

Classify the following as: rational or irrational and justify
your ¢onclusion.

(@ 3+x . (b) %\/:5

(©) V82 (@ vr

(See Exercises 49 and 50.)

Prove: The average of two rational numbers is a rational
number, but the average of two. irrational numbers can be
rational or irrational.

Can & rational number satisfy 10* = 37
Solve: 8x% —4x% - 2x +1 <.
Solve: 12x% — 20x2 > —11x + 2.

« Prove: If a, b, c, and d are positive numbers such thata < b

and ¢ < d, then dec < bd. (This result gives conditions
under which inequalities can be “multiplied together”)

Is the number represented by the decimial
0.101001000100001000001 . . . -

rational or irrational? Explain your reasoning.
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ABSOLUTE VALUE
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RELATIONSHIP BETWEEN SQUARE
ROOTS AND ABSOLUTE VALUES

APPENDIX
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Absolute Value :

’ vB...l. DEFINITION.  The absolute value or magnitu&e of a teai nurﬁber a is denoted by
la] and is defined by

ol = | o if a20
52 it a<o

Example 1

! Since 5> 0 | inde—4 < 0} { Since0'2 0}

Note that the effect of taking the absolute value of a number is to strip away the minus
sign if the number is negative and to leave the number unchanged if it is nonnegative.

Example 2 Solve |x — 3| =4,
Solution. Depending on whether x — 3 is positive of negative, the equation |x — 3] = 4
can be written as

x-3=4 or x—3=-4

Solving these two equations gives x = 7 and x = —1, <
Example 3 Solve {3x — 2] = |5x +4].

Solution. Because two numbers with the same absolute value are either equal or differ in
sign, the given equation will be satisfied if either
Ix—2=5x+4 or 3x—2=—(5x+4)

Solving the first equation yields x = —3 and'solving the second yields x = —%; thus, the

given equation has the solutions x = —3 and x = —1. «

Recall from algebra that a number is called a square root of a if its square jis a. Recall also
that every positive real number has two square roots, one positive and one negative; the
positive square root is denoted by +/z and the negative square root by —~./a. For example, .
the positive square root of-9 is +/9 = 3, and the negative square root of 9 is —~/9 == ~3,
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PROPERTIES OF ABSOLUTE VALUE

| B3 THEOREM. Ifa and b are real numbers, then

1 (© la/bl =lal/lb| Theabsolute value of aratio is the ratio of the bsolute valuss.

? REMARK. Readers who may have been tanght to write /9 as %3 should stop doing so,

since it is incorrect.

Itis a common error toreplace ~/a? by a. Although this is correct when a is nonnegative,
it is false for negative a. For example, if a = —4, then

Vol =/ =V16=4%a

A result that is correct for all a is given in the following theorem.

{ B2 THEORBM. For any real number a,

Proaf, Since a® = (+a)* = (—a)?, the numbers -+ and —a are square roots of a2, If
a 2 0, then +a is the nonnegative square root of @2, and if a < 0, then —a is the nonnega-
tive square root of a?. Since +/a? denotes the nonnegative square -root of @2, it follows that
vat=+4a if a>0
Vat=wg- if a<0

That is, Va2 = a].

(a) |—=eal=lal A number and its negative have the suine absolute value.

(b) |ab | = lal |b| The absolite valig of a product is the product of the absolute values..

‘We will prove parts {(a) and (b) enly.
Proof (@). From Theorem B.2,
| —a = /(—a? = Va® = |af
Froof (b).. From Theorem B.2 and a basic property of square roots,

labl = V(@b)? = Va2B = ValVB = lallbl ¥

* REMARK. Inpart {c) of Theorem B.3 we did not explicitly state that b ¢ 0, but this must

be so since division by zero is not allowed. Whenever divisions occur in this text, it will be
assumed that the denominator is not zero, even if we do not mention it explicitly.

The result in part () of Theorem B.3 can be extended to-three or more factors. More
precisely, for any » real numbers, 41, az, . . ., 4y, it follows that

Ja18z - -an| = laillaa] - - lanl M
In the special case where ay, az, . . ., a, have the same value, a, it follows from (1) that

et = et - @)
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GEOMETRIC INTERPRETATION OF

ABSOLUTE VALUE
4 B
a b
;i—-—v-b a-——.|
(@)
s o>
1«————-6{ b-—-u——»i
(b
Figure B.1
INEQUALITIES WITH ABSOLUTE
'VALUES
! —
~1 3 7

Appendix B: Absolute Value Al13

The notion of absolute value arises naturally in distance problems. For example suppose
that A and B are points on a coordinate line that have coordinates a and b, respectively.
Depending on the relative positions of the points, the distance d between them willbe b —a
or a — b (Figure B.1). In either case, the distance can be written as d = |b — a|, so we have
the following result,

B4 THEOREM (Distance Formula). If A and B are points on a coordinate line with :
coordinates a and b, respectively, then the distance d between A and Bisd = (b —~al. |

This theorem provides useful geometric interpretations of some common mathematical
expressions:

EXPRESSION GEOMETRIC INTERPRETATION ON A COORDINATE LINE
1% ~aj The distance between x and
Jx +al The distance between x and —a (since [x + af = jx — (~a)|)

ix| The distance between x and the origin (since [x] ={x —O0])

Inequalities of the form {x —a| < kand |x ~a| > k arise so often that we have summarized
the key facts about them in Table 1.

Table 1
INEQUALITY GBOMETRIC o ALTERNATIVE FORMS
t>0 INTERPRETATION FIGURE OF THE INEQUALITY
Ix—al <k x is within & »}fk units—»+-k un’its-—, “k<x—-a<k
units of a. Y T T a—k<x<a+k
Il —al >k ;;mogv ;hyan jk units—let un’its—al x—d<-korx—a>k
from a. a—k a ik o x<a-korx>a+k

REMARK. The statements in this {able remain true if < is replaced by < and > by >, and

: 1f the open dots are replaced by closed dots in the illustrations.

Example 4 Solve

@ =3 <4 () [x+4>2 (c) |2x 3 >5
Solution (@). The inequality [x — 3| < 4 can be rewritten as
“4<x-3<4 '
Adding 3 throughout yields
—-i <x <7

which can be written in interval notation as (~1, 7). Observe that this solution set consists

of all x that are within 4 gnits of 3 on a number line (Fagure B.2), which is consistent with
Table 1.
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Figure B.3
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AN INEQUALITY FROM CALCULUS.
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a-8 a a+8

0<x— a|<a§

FigweB.S5
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THE TRIANGLE INEQUALITY

Solution (b). The inequality |x + 4| > 2 will be satisfied if
x+4<-2 or x+4=2
Solving for x in the two cases yields
X<=6 or x>-2
which can be expressédvin interval notation as
(—o0, 6] U [—2, +c0)
Observe that the solution set consists of all x that are at least 2 units away from —4.on a
number line (Figure B.3), which is consistent with Table 1 and the remark that follows it.

Solution (c). Observe first thatx = 3 results in a division by zero, so this value of x cannot

be in the solution set. Putting this aside for the moment, we will begin by taking reciprocals
on both sides and reversing the sense of the inequality in accordance with Theorem A.1(e)
of Appendix A; then we will use Theorem B.3 to rewrite the inequality 1/]2x — 3| > 5in
a more familiar form:

| 1
2x -3 < 4
2llx — %f < % : Theorem B.3(5) i:
lx — %g < Tlﬁ ' We multiplied both sides by 1/[2] = 1/2.
—Tf{-, <x— % < {5 'fhﬁie‘i
8

l<x< § W addod 1/2 lhroughout

As noted carher, we must ehmmate x=3 2 to avoid- a division by zero, so the solution set is

7 3 3 8
5<X<2. or 2<'x<5

which can be expressed in interval notation as (2, 3) U ( % §).(See Figure B4) 4

One of the most important:inequalitie’sfin calculus is ‘
O<|x—al<$§ v 3)

where & (Greek “delta”) isa positive real number. This is equivalent to the two inequalities
O<|x—al and |x—a|<$ ‘

the first of which is satisfied by all x except x = a, and the second of which is satisfied by

all x that are within & units of @ on a coordinate line. Combining these two restrictions, we

conclude that the solution set of (3) consists of all x in the intérval (a — 8,4 -+ §) except

x = a (Figure B.5). Stated another way, the solution sc;cﬁf (3)is

@a—3d,a)U(a,a+19) 4y

1t is not generaily trye that |a + b| = |a| + |b]. For example, if 2 = 1 and b = ~1, then
la + b| = 0, whereas |a| -+ |b] = 2. It is true, however, that the absolute value of a sum
is always less than or equal to the sum of the absolute values. This is the cdntent of the
following vseful theorem, called the triangle inequality. '

;B,S' THEORER (Triangle Inequality). ff.d and b aré. any real numbers, then
la+b] < la] + b} ©)

Proof.” Observe first that a satisfies the inequality

—la}l < a < |a|

~ because either a = |a] or a = —Ja|, depending on the sign of a. The corresponding inequal-




EXERCISE SETR

T REMARK.
i inequality thatcanbe made when a and b are complex numbers. A more detailed explanation
¢ is outside the scope of this text.

Appendix B: Absolute Value ALS

ity for b is
~lbl <b <]
Adding the two inequalities we obtain
~(lal + |2)) < a + & < (la] + |B]) )
Let us now consider the cases @ + b > O and a + b < 0 separately. In the first case,
@ +b = |a -+ bl, so the right-hand inequality in (6) yields the triangle inequality (5). In the
second case, @ + b= —|a +b), so the left-hand inequality in (6) can be written as
—(laf + 18]} < ~la + b
which yields the triangle inequality (5) on multiplying by —1. 8

The name “triangle inequality” arises from a geometric interpretation of the
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1. Compute |xi if :
@x=7 by x=—+/2 In Exercises 17-24, solve for x,
. 2 s *‘_2 s et
©) x=£k (@) x =—k*. 17, [6x —2] =7

2. Rewrite -\/F(I — 6)* without using a square root or absolute
value sign.

: In Exerclses 3—10 ﬁnd all values of x for whxch the given

statement is true.

4 |x+2=x+2
5 X249 =x2+9 6. Jx% +5x| = x*+5x%
7. 3%+ 2x| =x]3x +2| 8. 16:—2x; =2Jx — 3|
9. Vx+5P=x+5 (3x —
11, Verify Ja? = lal forg = Tanda = —7.

12, Verify the inequalities —|a| < @ < 4| for @ = 2 and for
@ == —3.

3 k-3 =3~x

13, Let A and B be points with coordinates a4 and &. In each

part find the distance between A and B.
(@ a=9, b=7
(©)a=-8, b=6 @ a=+2,b=-3 \
(e a=~—11, b=—4 ) a=0, b=-5

14. Is the equality JI .= a? valid for all values of a? Explain.

15. Let A and B be points with coordinates ¢ and b. In each
part, use the given information to.find 5.
(a) a= —3,Bistotheleftof A, and |b ~ a| =
by a=-2,B istotherightofA,a’ndIb —al=
) a=35tb>al=7andb > 0.

- 16. Let E and F be points with coordinates ¢ and f. In each

part, determine whether £ is to the left or to the right of F-

18, 34 2x] =11

19. [6x ~ 7| = |3 + 2x| 20. |4x + 5| = {8x ~ 3|
COx|—11=2x 22 2x—T=lx+1]
x+5 x—3

2 24. =

3. D x =6 lx+4 5

terms of intervals,

In Exercises 25-36, solve for x and.express the solution in |

|<5 27 ]2x-3|<6

= 25. lx+6 <3
=2-3x 28 Br+li<d 29 x+2>1 30 [hx— 122
MAS-2124 B-iU>3 B 11E<2
~=
1 3.
M, 5 B >
Bx +1f ~ ' I2’x-'1!“4
M a=2 b=3 - 3% 2 <1
x4+ 3|

37. For which values of x is / (x — 5x +6)° = 2 — 5x + 62

38. Solve 3 < |x — 2] < 7 for x.

39. Solve |x —3|* —
ting u = jx — 3.}

— 4|x — 3| = 12 for x. [Hint: Begin by let-

40. Verify the triangle inequality [a +b| < la| + |b| (Theorem ‘

BS) for
(C) a = -7, b =8 @ g= —4, b= 4,

41. Prove: ja — b| < la| + |b).

on a coordinate line.
(@ f-e=4 ®)e—f=4 A2 Prove: [a} — |b] < la — bl
© f—-e=—6 ) e—f=-7 43, Prove: | {alz — |5} | < la — b|. [Hint: Use Bxercise 42.]
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SYSTEMS
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Coordinate Planes
and Lines
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Just as points on 4 coordinate line can be associated with real numbers, so points in a plane
can be associated with pairs of real numbers by introducing arectangular coordinate system
(also called a Cartfesian coordinate system). A rectangular coordinate system consists of
two perpendicular coordinate lines, called coordinate axes, that intersect at their origins.
Usually, but not always, one axis is horizontal with its positive direction to the right, and
the other is vertical with its positive direction up. The intersection of the axes is called the
origin of the coordinate system.,

It is common to call the horizontal axis the x-axis and the vertical axis the y-axis, in
which case the plane and the axes together are referred to as the xy-plare (Figure C.1).
Although labeling the axes with the letters x and y is common, -other letters may be more
appropriate in specific applications. Figure C.2 shows a uv-plane and a ts-plane—the first
letter in the name of the plane always refers to the horizontal axis and the second to the
vertical axis.

AV AT
i . i ll" - . o
~4-3-2-10 1 | [ . g | B T T | ;
-2 3 » : j
Xy-plane L. wy-piane | i pis-plane | |
i 4 P m} M‘L -
PFigure C.1 Figure C.2

Every point P in a coordinate plane can be associated with a unique ordered pair of real
numbers by drawing two lines through P, one perpendicular to the x-axis and the other
perpendicular to the y-axis (Figure C.3). If the first line intersects the x-axis.at the point with
.~coordinate a and the second line intersects the y-axis at the point with coordinate b, then we
associate the ordered pair of real numbers (a, b) with the point P. The nizmber a is called
the x-coordinate or abscissa of P and the number b is called the y-coordinate or ordinate of
P.We will say that P has coordinates (a, b) and write P (a, b) when we want to emphasize
that the coordinates of P are (g, b). We can also reverse the above procedure and find the
point P associated with the coordinates (&, b) by locating the intersection of the dashed
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lines in Figure C.3. Because of this one-to-one correspondence between coordinates and
points, we will sometimes blur the distiriction between points and ordered pairs of mumbers
bpmm o g P, B) by. talkmg about the point (a, b).

REMARK. Recall that the symbol (a, b) also denctég the open. interval between a and b;
the appropriate interpretation will usually be clear from the context.

RN

QP
y

Ina rectangu}ar coordinate system the coordinate axes divide the rest of the plane into
four regions called quadrants. These are numbered counterclockwise with roman numerals
as shown in Figure C4. As indicated in that ﬁgure it.is easy to determine the quadrant
in which a given point lies from the signs of its coordinates: a point with two positive
coordinates (+, +) lies in Quadrant I, a point with a negative x-coordinate and a positive
y-coordinate (—, +) lies in Quadrant IT, and so forth. Points with 4 zero x-coordinate lie
on the y-axis and p’oints with a. zero y-coordinate lie on the x-axis.

To piot a point P(a, b) means to locate the point with coordinates (a, b) in a coordinate
plane. For example, in Figure C.5 we have plotted the points-

P2,5), 0(-4,3), R(-5,-2), and S(4,-3)
Observe how the signs of the coordinates identify the quadrants in which the points lie.

Ay
6 -
5 b~ PQ, 5)
Figure C.4 4k
e o4, B ==k |
| 2
I 1 ! .
i i i l 1 i 1 i J - 1 { i 1 L g
“1-6-3-4-32-1, [ 123 4567
———— -2F |
R(-5, "’2) __3 ————— -41 S(4, _a})
—4 |
_5 -
Figure C.5
;é;;;{';“"""""'"“""""” sese%¢*e* The correspondence between points in & plane and ordered pairs of real numbers makes it

possible to visualize algebraic equations as geometric curves, and, conversely, to represent
geometric curves by algebraic equations. To understand how this is done, suppose that we
have-an xy-coordinate system and an equation involving two variables x and y, say

6x—4y=10, y=+x x=¥'+1, or x2+y’=1
‘We define a solution of such an equation to be any ordered pair of real numbers (a, b)
whose coordinates satisfy the equation when we substitute x = ¢ and y = b, For example,
the ordered pair (3, 2) is a solution of the equation 6x — 4y = 10, since the equation is
satisfied by x = 3 and y = 2 (verify). However, the ordered pair (2, 0) is not a solution of
this equation, since the equation is not satisfied by x = 2and y = 0 (venfy)

The following definition makes the association between equations in x and y and curves
* in the xy-plane.

: C.1 DEFINITION. The set of all solutions of an equation in x and y is called the 5011)- “
| tion set of the equation, and the set of all points in the xy-plane whose coordinates are
| members of the soluudn setis cailed the gmph of the equation.
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‘One of the main themes in calculus is to identify the exact shape of a graph. Point plotting
is one approach to obtaining a graph, but this method has limitations, as discussed in the
following example.

Example 1 Sketch the graph of y = x2.

Selution. The solution set of the equation has mﬁmtely many members, since we can
substitute an arbitrary value for x into the right side of y = x? and compute the associated
Yy to obtain a point (x, y) in the solution set. The fact that the solution set has infinitely
many members means that we cannot obtain the entire graph of y = x? by point plotting.
However, we can obtain an approximation to the graph by plotiing some sample members
of the solution set and connecting them with a smooth curve, as in Figure C.6. The problem
with this method is that we cannot be sure how the graph behaves between the plotted
points. For example, the curves in Figure C.7 also pass through the plotted points and hence
are legitimate candidates for the graph in the absence of additional information. Moreover,
even if we use a graphing calculator or a computer program to generate the graph, as in
Figure C.8, we have the same problem because graphing technology uses point-plotting
algorithms to generate graphs. Indeed, in Section 1.3 of the text we see examples ‘where
graphing technology can be fooled into producing grossly inaccurate graphs «

<
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-3 -2 -1 1 2 3 -3 -2 -1 P23

Figure C.7

In spite of its limitations, point plotting by hand or with the help of graphing technology

Example 2 Sketch the graph of y = .,/J_c

Solution. If x < 0, then /X is an imaginary number. Thus, we can only plot points for -
which x > 0, since points in the xy-plane have real coordinates. Figure C.9 shows the graph
obtained by point plotting and a graph obtained with a graphing calculator. <«

Example 3 Sketch the graph of y? — 2y —x = 0.
Solution. To calculate coordinates of points on the graph of an equation in x and y, it is

Adesirable to have y expressed in terms of x or x in terms of y. In this case it is easier to
express x interms of ¥, $0 we rewrite the e,quauon as

X = y2'--‘2y.

Members of the solution set can be obtained from this equation by substituting arbitrary
values for yin the right side and computing the associated values of x (Figure C.10). =«
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REMARK.  Most graphing calculators and computer graphing programs require that y be

expressed in terms of x to generate a graph in the xy-plane. In Section 1.8 we dlscuss a
method for circumventing this resmctlon.

Example 4 Sketch the graph of y = 1/x..

Solution. Because 1/x is undefined at x = 0, we can only plot points for which x # 0.

This forces a break, called a discontinuity, in the graph at x = 0 (Figure C.11). «
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Figure C.11
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Points where a graph intersects the coordinate axes are of special interest in many problems.

As illustrated in Figure C.12, intersections of a graph with the x-axis have the form (a, 0)
and intersections with the y-axis have the form (0, 5). The number a is called an x-intercept

of the graph and the number b a y-intercept.
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Figure C.13
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Example 5 Find all inferc?épt:s of
@3x+2y=6 (B)x=y2-2y ()y=1/x
Solution (a). To find the x-intercepts we set y = 0 and solve for x:
3g=6 oFf x=2

To find the y-intercepts we set x' = §-and solve for y:

2y=6 or y=3

As we will see later, the graph of 3x 4 2y =6 i3 the line shown in thure C.13.
Solution (b). To find the: x-mtercepts, set y = O-and solve for x:

x=0
Thus, x =01is the, only x-intercept. To find the y-intercepts, set x = 0 and solve for y:
¥y =2y=0
yy—-2)=

So the y-intercepts are y = 0 and y = 2. The graph is shown in Figure C.10.

Solution (c). To find the x-intercepts, set y = 0:

1

X .
This equation has no solutions (why?), so.there are no x-intercepts. To find y-intercepts we

- would set x = 0 and solve for y. But, substituting x = 0'leads to-a division by zero, which

is not allowed, so there are no y-intercepts either. The graph of the equation is shown in
Figure C.11. <

To obtain equations of lines we will first need to discuss the concept of slope, which is'a
numerical measure of the “steepness” of a line. v

Consider a particle moving left to right along a nonvertical line from a point Pi{xy, y;)
to a point Py(x3, y2). As shown in F1gure C.14, the particle moves y; — y; units in the
y-direction as it travels x, — x; units in the positive x-direction. The vertical change v, — y,
is called the rise, and the horizontal change x, — x; the run. The ratio of the rise over the run
can be used to measure the steepness of the line, which leads us to the following definition.

C2 [)l%FiNlTION If Px (x1, ¥1) and Py(xy, y») are points on a nonvemca] line, then
the slope m of the line is defined by
Tise Ya—N1

mes — = 220 | )
. Smum Xp—Xp .

* REMARK. Observe that this definition does not apply to vertical lines. For such lines we
i have x, = x; (a zero run), which means that the formula for m involves a division by zero.
FOr thjs reas'on th'e slope of a vertical line is undeﬁned which is sometimes described

When calculating the slope of a nonvertical line from Formula (1), it does not matter

wwhich two points on the line you use for the calculation, as long as they are distinct. This

can be proved using Figure C.15 and similar triangles to show that -
oy _ ¥ y{
X=X X — X .
Moreover, once you choose two points £ use for the calculatmn it does not matter which

one you call P; and which one you call P, because reversing the points reverses the sign of
both the numerator and denominator of (1) and henice has no effect on the ratio.

m =
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Example 6 1In each part find the slope of the line through
- : "~ (a) thepoints (6,2) and (9, 8)
(b) the points (2, 9) and (4, 3)

(¢) the points (—2,7) and (5, 7).
Solution. |

§—-2 6 o 3-9 -6 __T=7
@m=g—g=3=2 Om=gm=g="3 ©@m=gT5=0

Example 7 Figare C.16 shows the three lines determined by: the points in Example 6
and explains the significance of their slopes. « '
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' foves in the positive x-direction. i roves in the positive x-divection. o
Figure C.16

As illustrated in this example, the slope of a line can be positive, negative, or zero. A
positive slope means that the line is inclined upward to the right, a negative slope means that
the line is inclined downward to the right, and a zero slope means that the line is horizontal.
An undefined slope means that the line is vertical. Figure C.17 shows various lines through
the origin with their slopes.

BB EEIN L NNTEPRNONODOERISESFORIOGRORAOSD

PARALLEL AND PERPENDICULAR
LINES

The following theorem shows how slopes can be used to tell whether two lines are parallel
or perpendicular.

.3 THEOREM.

(a) Tweo nonvertical lines with slopes m; and my are parallel if and only if they have
the same slope, that is,

Smyp = rR2

(b) Two nonvertical lines with slopes m; and my are perpendicular if and only if the
producz of their slopes is —1, that is,

mlmz—; -1

This relationship can also be expressed as mi = —1/my ormy = —1/my, which |
states that nonvertical lines are perpendicular if and only if their slopes are neganve :
neczprocals of one another

- w

F éure 17 A complete proof of this theorem is a little tedlouc but it'is-not hard to motivate the results
informally: Let us start with part ().
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Figure C.19
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LINES PARALLEL TO THE
COORDINATE AXES

Suppose that L and L; ar€ nonvertical parallel lines with slopes 7, and m3, respectively.
If the Hnes are parallel to the x-axis, then m; = my = 0, and we are done. If they are not
paralle] to the x-axis, then both lines intersect the x-axis; and for simplicity assume that
they are oriented as in Figure C.18a. On each line choose the point whose run relative to
‘the point of intersection with the x-axis is 1. On line Ly t_hgifconespondhzg rise will be m,
and on L; it will be m,. However, because the lines are parallel, the shaded triangles in the
figure must be congruent (verify), so m; = my. Conversely, the condition 1 = m5 can be
used to show that the shaded triangles are congruent, from which it follows that the lines
make the same angle with the x-axis and hence are parallel (verify).

Figure C.18

Now suppose that L; and L; are nonvertical perpendicular lines with slopes m and m,,
respectively; and for simplicity assume that they are oriented as in Figure C.185. On line
L choose the point whose run relative to the point of intersection of the lines is 1, in which
case the cotresponding rise will be m;; and on line L, choose the point whose rise relative
to the point of intersection is —1, in which case the corresponding run will be —1/ms.
Because the lines are perpendicular, the shaded triangles in the figure must be congruent
(verify), and hence the ratios of corresponding sides of the triangles must be equal. Taking
into account that for line L the vertical side of the triangle has length 1 and the horizontal
side has length —1/m; (since m, is negative), the congruence of the triangles implies. that
m1/1 = (=1/m3)/1 or mymy = —1. Conversely, the condition m; = —1/m, can be used
to show that the shaded triangles are congruent, from which it ¢an be deduced that the lines
are perpendicular (verify).

Example 8 Use slopes to show that the points A(1, 3), B(3, 7), and C(7, 5) are vertices
of a right triangie.

Solution. We will show that the line through A and B is perpendicular to the line through
B and C. The slopes of these lines are.

7-3 d 5-7 1
my = —— = an Mg =% mee— = e —
3oL -3 2
 Slope: of the line  Slope of the line *
. through A and B : ;throgh B and C -

Since mymy = —1, the line through A and B is perpendicular to the line through B and C;
thus, ABC is a right triangle (Figure C.19). <

We now turn to the problem of finding equations of lines that satisfy specified conditions.
The simplest cases are lines parallel to the coordinate axes. A line parallel to the y-axis
intersects the x-axis at some point (a, 0). This line consists precisely of those. points whose
x-coordinates equal a (Figure C.20). Similarly, a line parallel to the x-axis intefsects the
y-axis at some point (0, &). This line consists precisely of those points whose: y-coordinates
equal b (Figute C.20). Thus, we have the following theorem.




0, 5 _ o L

¥R

(e, 0)

| Every point on L, has an {
x-coordinate of gaand
every poini-on L, has a
y—coordmate of b )

Figure C 20

ERCE I NAECIREIRSERAGROPNEINSENCHI ORI

LINES DETERMINED BY POINT AND
SLOPE

X
There is a unigue fine )
throu‘gh Pwith slope mi. |
Figure C.22
LINES DETERMINED BY SLOPE
AND y-INTERCEPT

' LA T HBORFM The vertical lme througk {a, 0) and the honzontal lme through (O b)
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and

Example 8 The graph of x = —35 is the vertical line through (—5, 0), and the graph of
y = 7 is the horizontal line through (0, 7) (Figure C.21). <

Ay ) AY

(0-7)

¥

165,00 | | x

Figure C.21

There are infinitely many lines that pass through any given point in the plane. However, if
we specify the slope of the line in addition to a point on it, then the point and the slope
together determine a unique line (Figure C.22).

Let us now consider how to find an equation of a nonvertical line L that passes through
apoint Py(x;, y;) and has slope m. If P(x, y) is any point on L, different from Py, then the
slope m can be obtained from the points P (x, y) and Py (xi, yi); this gives

= LN
% — X1
which can be rewritten as
y =y =mx - xp) 2)

With the possible exception of (x{, y1), we have shown that every point on L satisfies (2).
Butx = x;, y = y, satisfies (2), so that all points on L satisfy (2). We leave it as an exercise
to show that every point satisfying (2) lies on L.

In summary, we have the following theorem.

C.5 THEORBM. The line passing through Pi{xy, y1) and having slope m is given by
the equation

i

This is called the point-.élope form of the line.

Example 10 Find the point-slope form of the line through (4, —3) with slope 5.

Solution. Substituting the values x; = 4,y; = —3,andm = 5in(3) yields the point-slope
form y +3 = 5(x — 4). «

A nonvertical line crosses the y-axis at some point (0, b). If we use this point in the point- -
slope form of its equation, we obtain

y—b=mx—-0)
which we can rewrite as y = mx + b. To summarize;

£
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Figute C.23

o THEOREM. The line with y-intercept b and slope m is given by the equation

| This is called the slope-intercept form of the line.

y-intercept|

. o0,

@

¢ REMARK. Note that y is-alone on one side of Equation (4). When the equation of a Ime is
‘written in this way the slope of the line and its y-intercept can be determined by inspection
of the equation—the slope is the coefficient of x and the y-intercept is the constant term
i (Figure C.23).

Exampie 11

EQUAthOﬁ SLOPE  Yy-INTERCEPT
y= 3x+7 m=3 » b=7

Y= —x .;. m=-1 b:%
y=x m=1 b=0
y=2 m=0 b=2

<

Example 12 Find the slope-intercept form of the equation of the line that satisfies the
stated conditjons:

(a) slope is —9; crosses the y-axis at (0, —4)

{b) slopeis 1; passes through the origin

(c) passes through (5, —1); perpendicular to y = 3x + 4

(d) passes through (3, 4) and (2, —5).

Solution (g). From the given conditions we have m = —9 and b = —4, so (4) yields
y=-9%—4

Solution (b). From the given conditions m = 1 and the line passes through (0, 0), so
b = 0. Thus, it follows from (4) that y = x + 0 or y = x.

Solutum (¢). The given line has slope 3, so the line to be determined will have slope
m= -—— - Substituting this slope and the given point in the point-slope form (3) and then

sxmphfymg yields
y=(=bH= “g‘(x =5)

y=-—3x+}%

Solution (d). We will first find the point-slope form, then solve for y in terms of x to
obtain the slope-intercept form. From the given points the slope of the line is
—5_4 .
2-3
We can use either of the given points for (x,, yl) in (3). We will use (3, 4). This yields the
pomt—slope form
y—4=90 —3)
Solving for y in terms of x yields the slope-intercept form
y=0x—-23

=9

m =
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‘We leave it for the reader to stiow that the same equation results i (2, —5) rather than 3,4
is used: for (x4, 1) in (3) |

An equation that is expressible ift the form

Ax+By+C=0 ‘ (5)

where A, B, and C are constants and A and B are not both zero, is called a first-degree

equation in x and y. For example,
4x+6y—-5=0
is a first-degree equation in x and y since it has form (5) with
A=4, B=6, C=-5
In fact, all the equations.of lines studied in this section are first-degree equations in x afid y.
The following theorem states that the first-degree equations in x and y are precisely the
equations whose graphs in the xy-plane are straight lines. :

C.7 THEOREM. Every first-degree equation in x and y has a straight line as its graph
and, conversely, every straight line car be représented by a first-degree equatzon inx
and y

Because -of this theorem, (5) is sometimes called the general equation of a line or a
linear equation in x and y.

Example 13 Graph the equation 3x — 4y + 12 = 0.

Solution. Since this is a linear equation in x and y, its graph is a straight line. Thus,
to sketch the graph we need only plot any two points on the graph and draw the line
through them. It is particularly convenient to plot the points where the line crosses the
coordinate axes. These points are (0, 3) and (—4, 0) (verify), so the graph is the line in
Figure C.24. <

Example 14 Find the slope of the line in Fxample 13.

Solution. Solving the equation for y yields
y = %x +3
which is the slope-intercept form of the line. Thus, the slope ism = 2. <

touuo»de.bqeouauotncoqwcv:‘eolobn’aﬂo‘!OQQwa&o&sqadusaco&o.oo&gsmaﬁna"n.ncnu('u,u(oo:»ounbonuo»‘nnaaoeéuunuouo,mnnb-e’bu-oona

1. Draw the rectangle, three of whose: vertices are (6, 1), o(@x=2 (b) y=-3 yx=>0
_ (—4,1), and (6, 7), and find the coordinates of the fourth D y=x € y>x @& x| =1
vertex. o
2. Draw the triangle whose vertices are (—3, 2), (5, 2), and 4. @) x=0 ® y=0
(4,3), and find its area. ©y<0 @ x>landy<2
o (&) x=3 , () x| =5
}n Exercises 3 and 4, draw a rectanguiar coordmate system ] ST — ,
and sketch the set of points whose coordinates (x, y) satisfy |~ .| In Exercises 5-12, sketch the graph of the equation. (A cal-
the gjven condmoﬂs culating utility will be helpful in some of these problems.)
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5 y=4—x* ) 6. y=1+x*

7. y=+x~14 8.y=—vx+1
9. 2 —x4y=0 10. x =y — 2
11 xty =2 120 xy = —1

13. Find the slope of the line through

{8) (—1,2)yand 3,4) (3] (5 3 and {7, 1)
(©) (4, v2)and (=3,4/2) (d) (~2, —6) and (=2, 12).

14. Find the slopes of the. sides of the tnangie with vertices.

(~1,2), (6,5),and (2, 7).

15. Use slopes to determine whether the given points lie on thé

16.

17

18

19.

20.

21

.

22,

23.

'(a) Find y if x = 5,

same line.
(b} (—2,4),(0,2),and (1, 5)

:

Draw the line through (4, 2) with slope

@m=3  Om=-2 ©@m=-}
Draw the line through (—1, —2) with slope

@) m= % ) m=~1 © m= \/i

An equilateral triangle has one vertex at the origin, another

on the x-axis, and the third in the first quadrant. Find the
slopes of its sides.

List the lines in the accompanying figure in the order of
increasing slope

Iy/f \FMQ \Ty.g y
TR A

List the lines in the accompanying ﬁgure in the order of

increasing slope.

LA

—>
A

oo™

A -1

>
<

&

' 94 : ) | ’V . |
= T
I

A particle, initially at (1, 2), moves along a line of slope
m = 3 to a:neéw position @, ’
(b) Findx if y = -2,

A particle, initially at (7, 5), moves along a line of slope

m = —2 (0 a new posmon (x, y).
(a) Find yifx =9, by Fmdx if y = 12.

Let the point (3, k) lie on the lme of slope m. = 5 through
(—2,4); find k.

24. Given that the point (%, 4) is on the line through (1, 5) and

(23 _3)3 ﬁnd k,-

25. Find x if the slope of the line through (1, 2) and (x, 0) is the

.

negative of the slope of the fine through (4, 5) and (x, 0).

~ 26. Fmd x-and y if the line through. (0, 0) and (x, y) has slope
2, and the line through (x, y) and (7, 5) has slope 2.

27. Use slopes to show that (3, =1}, (6,4), (-3, 2), and .
(—6, —3) are vertices of aparaﬂelogram

28

of a right triangle.

. 29. Graph the equations

®x=3
(d) y=2x—7.
(b) y=3
®yy=y

(b) y=3—4ix

@y=1

(b) x =3y +2
(@ y—-3=0

(a) 2x +5y =15
© y=-2
30. Graph the equations
@ %2 =1
3 4
(c) y=0
31. Graph the equations
© y=-2x
32. Graph the equations
(@ y=2-3x
© y =243
33. Find the slope and y+ihtercep_t of
(a) y=3x-+2
() 3x+5y=8
@ 242
| (e) P 1.
34. Find the slope and y-intercept of
(a) y = ~4x +2
© = + =1

(e) aox+a;y 0 (a; #0).

Use siopes to show thdt (3, 1), (6, 3), and (2, 9) are vertices

the lme in slope-lntercept form.

In Exermses 35 and 36, use the graph to ﬁnd the equation of

35. 4

A

(@)
Figure Ex-35

36. AY

(@
Figure Ex-36

®




In Exarmses 37—48 find the: slope-mtercept form of the hne

satlsfymg the g:wen conditions..

37.
38.
39.
- 40.

41.
42.
43.
44,
45.

46.
47.

48,
49.

50.

-2, y~1ntercept =4,

Slope =
m=35,b=-3.
The line is parallel to y = 4x — 2 and its y-interceptis 7.

The line is parallel to 3x + 2y = 5 and passes through
(~1,2).-

The line is perpendicular to ¥y = Sx +9and its y—mtercept
is6.

The line is perpendlcular tox — 4y 7-and passes through
@, -4

The line passes through (2, 4)-and (1, —7)

The line passes through (—3, 6) and (—2, 1).

The y-intercept is %md the x-intercept is —4.

The y-intercept is b and the x-intercept is a.

The line is perpendicular to the y-axis and passes through
(4. 1).

The line is parallel to y = —5 and:passesthfough (-1, -8).

In each part, classify the lines as parallel, petpendicular, or
neither..

(@ ¥ = dx -—7andy =4x+9

() y=2x—3andy=7—jx

) 5x —3y+6=0and 10x—6y+7=0

(d) Ax+By+C =0and Bx —Ay+ D =0
@ y—2=4x—-3)andy—-T=1x-3)

In each part, classify the lines as parallel, perpendxcular, or

neither.

() y=—-5x+1landy =3~ 5x

) y~1=2(x—3)andy—4=—3(x+7)

(©) 4 +5y+7=0and5x -4y +9=0
(d Ax+By+C=0and Ax +By+ D=0
(e) y=§xandx_=%y

51,

52

-

53.

54.
55.
56.
57.

58

59,

&

61.

@) E =mc*
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For what value of £ will the line 3x 4 ky = 4

(a) have slope 2

(b) have y-intercept 5

(c) pass through the point (-2, 4)

(d) be paralle} to the'line 2x — 5y = 1

{e) be perpendicuiar to the line 4x + 3y = 27

Sketch the graph of y = 3x and explain how this graph is

related to the graphs of y = +/3x and y = —/3x.

Sketch the graph of (x — y)(x + y) = 0 and explain how it
is related to the graphs of x ~ y = Qandx + y = 0.

Graph F = £C + 32 in a CF-coordinate system.

Graph # = 3v? in a wv-coordinate system.

Graph Y = 4X + 5 in a YX-coordinate system.

A point moves in the xy-plane in such a way that at any time
t its coordinates are given by x = 5¢ +2and y = ¢t — 3. By
expressing y in terms of x, show that the point moves along,
a straight line.

A point moves in the xy-plane in such a way that at any time
t.its coordinates are given by x = 1+32and y = 2~¢%. By
expressing y in terms of x, show that the point moves along
astraight-line path and specify the values of x for which the
equation is valid. ,

Find the area of the triangle formed by the coordinate axes
and the line through (1, 4) and (2, 1).

- Draw the graph of 4x2 — 9y? = 0.

In each part, name an appropriate coordinate system for
graphing the equation [e.g., an aB-coordinate system in part
(2)], and state whether the graph of l:he equation is 2 line in
that coordinate system.

(@ 3e¢—28=35

(b) A = 2000(1 4 0.061)

©) A=m?

(¢ constant)

(r and C constant)

{r constant)

(h constant)

@ V=C(—r)
@ V=1lmn
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Dlstance, Circles,
and Quadratic Equatwns
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Suppose that we are interested in finding the distance d between two points Py (x;, ¥1) and
Py(x, y2) in the xy-plane. If, as in Figure D.1, we form a right triangle with P; and P as
vertices, then it follows from Theorem B.4 in Appendix B that the sides of that triangle
have lengths |x; — x;] and |y, — y;|. Thas, it follows from the Theorem of Pythagoras that

d=+/lxz =21+ [y — 32 = vx2 — 2102 + Oz — y1)2
and hence we have the;foHowing result.

D.1 THEOREM. The dlstance d between two points Py (x; , yl) and Pg(Xg, yg) inat
‘coordinate plane is given by '

M

AY

bz-ni

A A3

v
lxa—xy

Figure D.1

? REMARK. - To apply Formula (1) the scales on the coordinate axes imust be the same;
otherwise, we would not have been able to use the Theorem of Pythagoras in the derivation.
¢ Moreover, when using Formula (1) it does not matter which point is labeled P; and which
i one is labeled Py, since reversing the points changes the signs of x, — x; and y, — y,; this
i has no effect on the value of 4 because these quantities are squared in the formnula, Whenitis
JAmportant to emphasize the points, the dlstance between Py and Py is denoted by d( Py, P)
i ord(p, B).

Example 1 Find the distance between the points (—2, 3) and (1, 7).

Solution. If welet (x), y1) be (=2, 3) and let (x2, yz') be (1, 7), then (1) yields
d=yII—(-DP+[T-3P =3+ 4 =/25=5 <
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| D2 THEOREM (The Midpoint Formula).  The midpoint of the line segment joining two

Appendix D: Distance, Circles, and Quadratic Equations A29 ‘

Example 2 It can be shown that the converse of the 'I‘heorem of Pythagoras is true; that
is, if the sides of a triangle satisfy the relationship a?® + b* = c?, then the triangle must be

aright triangle. Use this result to show that the points A(4,6), B(1, —3), and C(7,5) are
-vertices. of a right triangle.

Solution. The points and the triangle are shown in Figure D.2. From (1), the lengths of

‘the sides of the triangles are

(4, B)= (A —52+ (367 =+ 81 =90
d(4,C)=/(T—42+ (5 - 62 =+ 1 =10
d(B,C) =+/(7 ~ 1) +[5 — (-3)P = /36 + 64 = /100 = 10

Since
[d(4, BYF + [d(A, O)F = [d(B, O)F

it follows that AABC is a right triangle with hypotenuse BC. |

Ttis often necessary to find the coordinates of the midpoint of a line segment j joining two

points in the plane. To derive the midpoint formula, we will start with two points on a coor-
dinate line. If we assume that the points have coordinates @ and b and that a < b, then,
as shown in Figure D.3, the distance between ¢ and b is b — 4, and the coordinate of the

midpoint between g and b is.

a+ib-a)=4a+jb=4@+h)
which is the arithmetic average of a and b. Had the points been labeled with < &, the same
formula would have resulted (verify). Therefore, the midpoint of two points on a coordinate
line is the arithmetic average of their coordinates, regardless of their relative positions.

If we now Iet Py(x;, y1) and P,(xz, y;) be any two points in the plane and M (x, y) the
midpoint of the line segment joining them (Figure D.4); then it can be shown using similar
triangles that x is the midpoint of x1 and x; on the x-axis and ¥ is the midpointof y; and ¥,
on the y-axis, so

=30 +x) and y=1(+y)
Thas, we have the following result.

pomts {xy, y;) and (%3, y2) in a coordinate plane is

( (x1 +xz), z(}’l +)'2)) )

Example 3 Find the midpoint of the line segment joining (3, —4) and (7, 2).

Solution. From (2) the midpoint is |
((G+M, =4+2) =5, -1) , <

If (xg, yo) is a fixed point in the plane, then the circle of radius  centered at (xg, yp) is the
set of all points in the plane whose distance from (xo, yp) is » (Figure D.5). Thus, a point
(x, y) will lie on.this circle if and only if

VE—x0 +(y—yo)2=r
or equiValentIy, '

- XU)Z +(y- yzﬁz =7 | | @)
This is called the standard form of the equation of a czrcle |
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OTHER FORMS FOR THE EQUATION
OF A CIRCLE

Example 4 ' Find an equation for the circle of radius 4 centered at (—5, 3).

Solution. From (3) with xg = —5, yp = 3, and = 4 we obtain
x+57+(~3=16

If desired, this equation can be written in an expanded form by squaring the terms and then

sunpleymg

(x +10x+25)+(y —6y~§~9)—~16 0 .
x% 4 y2 4 10x ~ 6y+18=0 - <
Example 5 Find an equation for the circle with center (1, —2) that passes through ,(4-, 2).

Solution. The radius r of the circle is the distance between (4, 2) and (1, —2), so
== 42 £ (-2-22=5

"We now know the center and radxus, 0 we can use (3) to obtain the equation

=1 +0+2*=25 or x4y —2x+4dy~20=0 |

When you encounter an equation of form (3), you will know immediately that its graphisa

-circle; its center and radius can then be found from the constants that appear in the-equation:

(x — xo)* + (o —y)? - r?
::,‘.;ﬂ-c‘d(j),rdinatc of the cgn’ter. ié x;). y coordmala of the center 1s yo . radmssquared

Example 6

EQUATION OF A CIRCLE CENTER (x3, Yp) ’ FRADm_s r »

=22+ (y-52 =9 2.5 3

G+ TP+ + D= 16 ~7,-1) 4

x2+y% =25 (0, 0) 5

(-4 +y2=5 @,0) V5

‘

The circle x? + y? = 1, which is centered at the origin and has radius 1, is of special
importance; it is called the unit czrcle (Figure D.6).

An alternative version of Equation (3') can be obtained by squaring the terms and simplifying.
This yields an equation of the form

x2+y2+d1:‘+ey+f=0 ‘ 4
where d, e, and f are constants. (See the final equations in Examples 4 and 5.)

Still another version of the equation of a circle can be obtained by multipl ying both sides
of (4) by a nonzero constant A. This yields an equation of the form

A + Ay +Dx +Ey+ F =0 5

where A, D, E, and F are constants and A # 0.
. Ifthe equation of a circle is given by (4) or (5), then the center and radius can be found by
first rewriting the equation in standard form, then reading off the center and radius from that

equation. The following example shows how to do this using the technique of completing

the square. In preparation for the example, recall that completing the square is a method
for rewriting an expression of the form

x4+ bx
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DEGENERATE CASES OF A CIRCLE
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as a difference of two squares. The procedure is to take half the coefficient of x, square it
and then add-and subtract that result from the original expression to obtain

x4 bx = x* + bx + (b/2)? — (b/2)* = [x + B/2)F - B/2)*

Example 7 Find the center and radius of the circle with equation

(2) x2+y2'—8x+2y+8='0 ®) 2x% +2y* +24x — 81 =0
Solution (a). Fisst, group the x-terms, group the y~terms, and take the constant to the right
side:

(x?—8x)+ (¥ +2y) =8
Next we want to add the appropriate constant within each set of parentheses to complete
the square, and subtract the same constant outside the parentheses to maintain equality. The

appropriate constant is obtained by taking half the coefficient of the first-degree term and
squaring it. This yields

(> =8x+16) — 16+ (> +2y +1) — 1 = —§
from which we obtain

=+ +1P=-8+16+1 of (x—4*+@G+1)12=9
Thus from (3), the circle has center (4, —1) and radius 3.

Solution (b). The given equation is of form (5) with A = 2. We will first divide through
by 2 (the coefficient of the squared terms) to reduce the equation to form (4). Then we will

“proceed as in part (a) of this example; The computations are as follows:

P4y 412§ 0 [
(x? +12x) + y* = %’4

423047t Y 436 [
(x+6)>+y> =12

From (3), the circle has center (—6, 0) and radius /13 '53 «

There is no guarantee that an equatjon of form (5) represents a circle. For example, suppose
that we divide both sides of (5) by A, then complete the sqnares to obtain

& -x)’+ (- )’ =k
Depending on the value of £, the following situations occur:

e (k>0) The graph is a circle with center {xg, yo) and radius v/%.
¢ (k=0) Theonlysolution of the equationis x = xp, y = yp, so the graph is the single
point (xo, o).

e (k< 0) Theequationhas no real solutions and consequently no. graph.

Example 8 Describe the graphs of
@ E-1P+@+4?=-9 O x-12+@+4*=0

Solution (a). There are no real values of x and y that will make the left side of the equation
negative. Thus, the solution set of the equation is empty, and the equation has no graph.

Solution (b). The only Valies of x and y that will make the left side of the equation O are
x =1, y = —4. Thus, the graph of the equation is the single point {1, —4). «
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s _ . .
The following theorem summarizes our observations.

{ D3 THEOREM, An equation of the form

(6)

| where A # 0, represents a circle, or a point, or else has no graph.

? REMARK. The last two cases in Theorem D.3 are called degenerate cases. In spite of
the fact that these degenerste cases can occur, (6) is often called the general equation of a
i circle.

AEBRINEAITNRATDIPENTNEIIRNELREIDROCREODD

* \ An equation of the form
THE GRAPH of y = ax? + bx + ¢

y=ax*+bx+c {(a#0) _ . )

1s called a quadratic equation in x. Depending on whether a is positive or negative, the
graph, which is called a parabola, has one of the two forms shown in Figure D.7. In both
cases the parabola is symmetric about a vertical line paralle] to the y-axis. This line of
symmetry cuts the parabola at a point called the vertex. The vertex is the low point on the
curve if a > 0 and the high point if a <0

AY AY

' ;Iv Vertex
]

~b/(2a) | -bl2a)
"y'=ax2+bx+c i y=ax2+-bx_+c
a>0 a<l
Figure D.7 ‘
01 -2 ]
1 T3 " - Inthe exercises (Exercise 78) we will help the reader show that the x-coordinate of the
2l 3 vertex is given by the formula

®

Wlth the aid of this formula, a reasonably accurate graph of a quadratic equanor; in x can
be obtained by plotting the vertex and two points on each side of it.

Example 9 Sketch the graph of

wZ—i\ 1/2/3 :;"" (3)y:x2~2x*2 ®) y=—x24+4x -5

Solution (@). The equation is of form (7) witha = 1, b = —2, and ¢ = —2, 50 by (8) the
x-coordinate of the vertex is

! , b
y x—2x2 x=—e—=1

2a .
F:gure D g ' Using this value and two additional values on each side, we obtain Figure D.3.
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Figure D.9
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Solution (b). The equation is of form (7) witha = —1, b =4, and ¢ = -5, s0 by (8) the

x-coordinate of the vertex is
b
¥ 2d

Using this value and two additional values on each 31de we obtain the table and graph in
Figure D.9. <

Quite often the intercepts of a parabola y = ax® + bx + ¢ are important to know.
The y-intercept, y = ¢, results immediately by setting x = 0. However, in order to obtain
the x-mtercepts if any, we must set y = 0 and then solve the resulting quadratic equation
ax?+bx +c=0.

Example 10 Solve the inequality

X —dx =250

Solution. Because the left side of the inequality does not have readily discernible factors,
the test-value method illustrated in Example 4 of Appendix A is not convenient to use.

Instead, we will give a graphical solution. The given inequality is satisfied for those values
of x where the graph of y = x? — 2x — 2 is above the x-axis. From. Figure D.8 those are

- the values of x to the left of the smaller intercept or to the right of the larger intercept. To

find r.hese mtercepts we set y = 0'to obtain
Solving by the quadratic formula gives.
b+ SBZ —Apr D , i
ENV %czziﬁziiﬁ_
2a 2
Thius, the x-intercepts are

x=1+/3%27 and x=1-+3~-07
and the solution set of the inequality is
(—o, 1 = VB U (1 + /3, +o9) | «

% REMARK. Notethatthe decimal approximations of the intercepts calculated in the preced-
i ing example agree with the graph in Figure D.8. Observe, however, that we used the exact
i values of the intercepts to express the solution. The choice of exact versus approximate
values is often a matter of judgment that depends on the purpose for which the values are to
¢ be used. Numerical approximations often provide a sense of size that exact vahies do not,

but they can introduce severe errors if not used with care.

Exampfe' 11 From Figure D.9 we see that the parabola y = —xz +dxr— 5 has no'

y 0 and solvmg the resulting equation
~x*+4x~5=0
by the quadratic formula yields

~4 + /16 - 20 .

Because the solutions are not real numbers, there are no x-intercepts. <

Example 12 A ball isthrown straight up from the surface of the Barth at time ¢ = O's

with an initial velocity of 24.5 m/s. If air resistance is ignored, it can be shown that the
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ot
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Distance (m})
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Tirne (s)

Figure D.10
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THEGRAPHof x=ay2 + by + ¢

EXERCISE SET D

distance s (in meters) of the ball above the ground after ¢ seconds is given by
s = 24.5t — 4.98 - ' : ' €)

‘(a) Graphs versus ¢, makmg the #-axis horizontal and the s-axis verncal

(b) How high does the ball rise above the ground?

Solution (a). Equation (9) is of form (7) with @ = ~4.9, b = 24 5,and ¢ = 0, so by (8)
the t-coordinate of the vertex is

b 95 .

and consequently the s-coordinate of the vertex is
5 =24.5(2.5) — 4.9(2.5)* = 30.625 m

‘ The factored form of (9) is

=49t(5 —1)

so the graph has z-intercepts t = 0 and r = 5. From the vertex and. the intercepts we obtain
the graph shown in Figure D.10.

Solution (b) From the s-coordinate of the vertex we deduce that the ball rises 30,625 m’
above the ground. <

If x and y are interchanged in (7), the resulting equation,
x=ay’ +by+c

is called a quadratic equation in y. The graph of such an equation is a parabola with its line
of symmetry parallel to the x-axis and its vertex at the point with y-coordinate y == —b/ (2a)
(Figure D.11). Some problems relating to such equations appear in the exercises.

Ay AY

-bi(2a)

¥

x=ay? +by+c |t =gyt + by + ¢
>0 _.a<o

Figure D.11
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1. Where in this section did we use the fact that the same scale 4. A(2,0), B(-3,6) 5. A(-2, —6), B(-17, %4)

was used on both cootdinate axes?

InExercises 6-10, use the distance formula to solve the given

In Exercises.2-5, find i o problem.
- (a) the distance between A and B
; '(b} the midpoint of the Ime segment 3ommg A and B ! 6. Prove that (1 1) (" —8) and (4, 10) lie ona stralght lirie.
..... 5

2. A(2,5), B(—-1,D

7. Prove that the triangle with vertices (5, —2), (6, 5), (2,2) is

3. A(7. 1), B (1,9) isosceles.




8. Provethat (1, 3), (4, 2), and (—2, —6) are vertices of a right

triangle and then speclfy the vertex at which the right angle.

occurs.

9. Prove that (0, —2), (~4, 8), and (3, 1) lie on a circle with
center (—2, 3).

10. Prove that for all values of  the pdint (¢, 21 — 6) isequidis-
tant from (0, 4) and (8, 0).

11. Findk 'g‘iven that (2, k) is equidistant from (3, 7y and (9, 1).
12. Find x and yif (4, —5) is the mxdpomt of the line segment
Jommg( 3 2y and ¢, y)

In Exercxses 13 and 14 find an equatlon of the glvcn line.

13. The llne ] the perpenmcular bisector of the lifie segmerit
joining (2, 8) and (—4, 6).

14. The line is the perpendicular bisector of the line segment
joining (5, —1) and (4, 8).

15. Find the point on the fine 4x ~ 2y + 3 = 0 that is equidis-
tant from (3, 3) and (7, —3). [Hin#: First find an equation of
the Iine thatis the perpendicular bisector of the line segment
joining (3, 3):and (7, ~3).]

. 16. Findthe ,distanc.e‘fmmthegoint;(ﬁ%ﬁ, ~2) to-the ling:’

(@ y=4 () x =-1.

17. Find the distance from (2, 1) to the line 4x ~ 3y + 10 = 0.
[Hint: Find the foot of the perpendicular dropped from the
point to the line.} v

- 18. Find the distance from (8, 4) tothe line 5x 4 12y — 36 = 0.
[Hint: See the hint in Exercise 17.]

19. Use the method described in Exercise 17 to prove that the
distance d from (xo, yo) to the line Ax + By +C =01s

[Axo + Byo +C|

VA2 + B?

20. Use the formula in Exercise 19 to solve Exercise. 17.

d=

21. Use the formula in Exercise 19 to solve Exercise 18.

22. Prove: For any triangle, the perpendicular bisectors of the
sides meet at a point. [Hins: Position the triangle with one
vertex on the y-axis and the opposite side on the x-axis, so
that the vertices are (0, a), (&, 0), and (¢, 0).]

In Exercisé;“\ZB' and 24, ﬁnd thecenter and rédiﬁs véf Each
circle,

23, (@) x2+y* =25
®) (x— 12+ (y—4)2 =16
© +1P2+G+3)2=
@ x4+ (+2?%=1

24, (8) ¥*+y* =9
by x=32+(y—5%=36 v
© G+D*++1)2=38
@ G+1)2 4y =1
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Tn Bxercises 25-32, find the standard equation of the circle |
sansfymg the given conditions,

25. Center (3 ——2) radius = 4.
26. Center (1, 0); diameter = /8.
27. Center (—4, 8); circle is tangent to the x-axis.

28. Center (5, 8); circle is tangent to the y~axis.
29. Center (~3, —4); circle passes through the origin.
30. Center (4, —5); circle passes through (1, 3).

31. A diameter hias endpoints (2, 0) and (0, 2).
32. A diameter has endpoints (6, 1) and (2, 3).

‘ i o - ’ i ) , = : j - ol N g ™ {.
{ In Exercises 33-44, determine whether the equation repre- i

' sents a circle, a point, or no graph. If the equation represents |
a circle, find the center and rad;us i

33 X +y? - 2x ~dy—11=0
4. 2 +y +8x+8=0
35, 267+ 2y +4x —4y =0
36. 6x% 4 6y2 —6x +6y =3
37 x% +y 4+ 2x 2y +2=0
38 24 y2—dx —6y+13=0
39. 9x% 4+ 9y% = |
40. (x*/4) + (y*/4) =1
41 x* 4+ y 4+ 10y +26 =0
42, x%+y* —10x -2y +29 =0
43, 16x2 + 16y +40x +16y -7 =0
44, 4x* +4y* — 16x ~ 24y =9
45, Find an equation of ,
(2) the bottom half of the circle x* + y? = 16
{b) the tophalf of the circle x + y* + 2x — 4y +1=0.
46. Find an equation of
(a) the right half of the circle x* 4+ y% = 9
(b) the left half of the circle x% + y? — 4x +3 = 0.

V5 +dx — 12,
(b) x =34 /4 — 2,

49. Find an equation of the line that is tangent to the circle

- 47. Graph

(@) y = m )y =
48, Graph
@ = —JiTy

4 yt= 25
at the point (3, 4). on the circle.

50. Find an equation of the line that is tangent to the circle at
the point P on the circle
@ 2y +2x=9; P2, 1)

. () X+ y? —6x+4y =13; P@,3).

51. For the circle x? + y2 = 20 and the'point P(—1, 2):
-(a) Is P inside, outside, or on the circle?
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(b) Find the largest and smallest distances between P and

points on the circle,
52. Follow the directions of Exercise 51 for the circle
x? +vy2 — 2y --4:. ¢}
and the point P (3, 5)
Referring to the accompanying figure, find the coordinates
of the points T and 7", where the lines L and L' are tangent
to the circle of radius I with center at the origin.

\v\vm x
7!/ 3,00

o T

53

*

Figure Ex-53

54. A point (x, y) moves so that its distance to (2, 0) is NG
‘times its distance-to (0, 1).
(@) Show that the point moves along a circle.

(b) Find the center and radius.

A point {x, y) moves so that the sum of the sq_liares of its
distances from (4, 1) and (2, —5) is 45.

(a) Show that the point.moves along a circle.

(b} Find the center and radius.
56. Find all values of ¢ for which the system of equations

55,

»

(G—ct+yr=1
has 0, 1, 2, 3, or 4 solutions. [Hint: Sketch a graph.]

In Exercises 57-70, graph the parabola and label the coordi-
| nates of the vertex and the intersections with the coordinate
aXe’S;

s7. y = +2 58, y=x>~3

59, y=x+2x -3 60. y=x?-3x~4
6l. y=—x2+4x+5 62. y=—x*+x

63. y=(x —2)? 64. y=(3+x)?
65. x> —2x+y =0 66. x* +8x +8y =0
67. y =3x* - 2x+1 C68. y=xt4x+2
69. x = —y*+2y+2

70. x =y>—4dy+5
71. Find an equation of
(a) the right balf of the paraboi& y = 3 x?
(b) the left half of the parabola y =ux2 — 2x,

72. Find an equation of
(a) the upper half of the parabola x = y -5
(b) the Tower half of the. paraboh X = y —y—2

73. Graph
@ y=~v5E5 (®) x'-—-»z\/f —.

L R

4. Graph

@ y=1++4~x (b) x =3+./3.

75. If a ball is thrown straight up with an initial velocity of
32 ft/s, then after # seconds the distance s a‘bove its starting
height, in feet, is given by s = 32¢ = 1612,

(a) Graph this equation in a ts-coordinate system (z-axis
horizontal).

(b} At what time ¢ will the ball be at its. hxghest point, and
how high will it rise? "

~ 76. A rectangular field is to be enclosed with 500 ft of fencing

along three sides and by a straight stream on the fourth side.
Let x be the length of each side perpendicular to the stream,
and let y be the length of the side parallel to the stream.
(2) Express y in terms of x.
{(b) Expressthe area A of the field in terms of .
(c) What is the largest area that can be enclosed?
77. A rectangular plot of land is to be enclosed using two kinds
of fencing. Two opposite sides will have heavy-duty fenc-
ing costing $3/ft, and the other two:sides will have standard
fencing costing $2/ft. A total of $600 is available for the
fencing. Let x be the length of each side with the heavy-
duty fencing, and let y be the length of each side with the
standard fencing.
(a) Express y in terms of x.
(b) Find a formula for the area A of the rectangular plot in
terms of x.
(c) What is the largest area that'can be enclosed?

.

78. (2) By compietmg the square, show that the quadratic equa-

tion y = ax® 4+ bx + ¢ can be rewritten as

{ . b\ [ B\

ifa#0.

(bY Use-the:result in part (a) to show that the graph of the
«quadratic equation y = ax? 4 bx + ¢ has its high point
at x = —b/(2a) if « < 0 and its low point there if
o> 0

In Exercls'es 79 and 80 solve the gwen mequahty

o . - P |

79 (a) 22 +5x~1<0 (B x*-2x+3>0
80. (_’a‘)»x,2+‘x—1 >0 ) ¥*—4x +6 <0

81. Attimet = 0 a ball is thrown straight up from 2 heightof
5 ft above the ground. After t seconds its distance s, in feet,
above the ground is given by s = § + 40¢ — 1612,

(a) Find the maximum height of the ball above the ground.

{(b) Find, to the nearest tenth of a second, the time when the
ball strikes the ground.

(¢) Find, to the nearest tenth of a second, how long the ball
will be more than 12 ft dbove the ground.

82. Find all values of x at which points on the parabola y = x?
lie below the fine y = x -+ 3.




